Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Comparative Study to Assess the Soot Reduction Potential of Different In-Cylinder Methods and Exhaust Gas Aftertreatment Systems for Direct Injection Diesel Engines

2007-10-29
2007-01-4016
In this study different methods to reduce the soot emissions of Diesel engines were investigated and compared to obtain their soot reduction potential. Apart from investigations on the practically usable engine map area with so called homogeneous charge compression ignition (HCCI) combustion processes a new heterogeneous combustion processes was developed and investigated which offers significantly reduced soot emissions while still applicable in the entire engine map. For the HCCI experiments the emphasis was put on the achievable engine load range when using conventional injector nozzles which still allow a conventional heterogeneous engine operation.
Technical Paper

Optimization of Injection of Pure Rape Seed Oil in modern Diesel Engines with Direct-Injection

2007-07-23
2007-01-2031
Natural vegetable oil like rape seed oil is a potential substitute for regular fuel for diesel engines. Compared to other biogen fuels like rape seed methyl ester (RME), pure rape seed oil is neutral towards groundwater and it needs considerably less energy and additives for production. Different physical properties of rape seed oil compared to Diesel fuel are the reason why conventional Diesel engines can hardly be used satisfactorily with rape seed oil without being modified. Poor exhaust-emission behavior is caused by the incomplete combustion. Due to poor spray atomization of vegetable oil, an increased fuel entrainment in the lubricating oil, carbonization in the combustion chamber and deposits at injectors and valves are further drawbacks of injection systems designed for conventional diesel fuel. The preheating of this fuel can solve some problems.
Technical Paper

Optical Fiber Technique as a Tool to Improve Combustion Efficiency

1990-10-01
902138
A multi-optical fiber technique is presented, which enables one to detect the flame propagation during non-knocking and knocking conditions in real production engines. The measurement technique is appropriate to detect knock onset locations and to describe the propagation of knocking reaction fronts. With this knowledge, the combustion chamber shape can be optimized, leading to a better knock resistance and higher combustion efficiencies. Results of flame propagation under non-knocking and knocking engine operating conditions are presented. In addition, correlations between knock onset locations and areas in which knock damage occurs are shown for different engines. Presented are the effects of combustion chamber modifications on the combustion efficiency, based on the analysis of the optical fiber measurements.
Technical Paper

Quasi-Dimensional Combustion Simulation of a Two- Stroke Engine

2006-11-13
2006-32-0062
The paper presents an application of a quasi-dimensional (QD) model for the combustion simulation in a two-stroke engine. In contrast to 0D-models the QD-models provide an opportunity to describe the development of the combustion process in dependence on the actual thermodynamic state in the combustion chamber. The QD-models enable to couple the flame propagation with the combustion chamber geometry and with the flow field. An extensive sensitivity analysis is performed for the QD-model by varying the parameters of the QD-model itself and of the operating points. The constructed QD-model is examined under various conditions (engine speed, the delivery ratio and the air to fuel ratio) and shows a good agreement with experimental results.
Technical Paper

Ion-Current Measurement in Small Two-Stroke SI Engines

2008-09-09
2008-32-0037
The cyclic changes of the cylinder pressure are mainly influenced by the primary inflammation phase, which in turn depends on the local air/fuel ratio and the residual-gas fraction at the spark plug. The ion-current measurement technique is based on the conductivity of the mixture during the internal combustion. It is therefore possible to use the signal for combustion diagnostics when using the spark plug as a sensor. This article demonstrates the potential of ion sensing at the spark plug and in the combustion chamber to detect sources of interference which prevent an optimal combustion process. Comparing the ion signals of consecutive combustion cycles delivers explanations of phenomena that could not yet be sufficiently characterized by cylinder-pressure indication. The results allow new fundamental approaches to the optimization of the combustion process.
Technical Paper

Investigations of the Formation and Oxidation of Soot Inside a Direct Injection Spark Ignition Engine Using Advanced Laser-Techniques

2010-04-12
2010-01-0352
In this work the formation and oxidation of soot inside a direct injection spark ignition engine at different injection and ignition timing was investigated. In order to get two-dimensional data during the expansion stroke, the RAYLIX-technique was applied in the combustion chamber of an optical accessible single cylinder engine. This technique is a combination of Rayleigh-scattering, laser-induced incandescence (LII) and extinction which enables simultaneous measurements of temporally and spatially resolved soot concentration, mean particle radii and number densities. These first investigations show that the most important source for soot formation during combustion are pool fires, i.e. liquid fuel burning on the top of the piston. These pool fires were observed under almost all experimental conditions.
Technical Paper

Use of Ceramic Components in Sliding Systems for High-Pressure Gasoline Fuel Injection Pumps

2010-04-12
2010-01-0600
Spray-guided gasoline direct injection demonstrates great potential to reduce both fuel consumption and pollutant emissions. However, conventional materials used in high-pressure pumps wear severely under fuel injection pressures above 20 MPa as the lubricity and viscosity of gasoline are very low. The use of ceramic components promises to overcome these difficulties and to exploit the full benefits of spray-guided GDI-engines. As part of the Collaborative Research Centre “High performance sliding and friction systems based on advanced ceramics” at Karlsruhe Institute of Technology, a single-piston high-pressure gasoline pump operating at up to 50 MPa has been designed. It consists of 2 fuel-lubricated sliding systems (piston/cylinder and cam/sliding shoe) that are built with ceramic parts. The pump is equipped with force, pressure and temperature sensors in order to assess the behaviour of several material pairs.
Technical Paper

Optical Investigations of the Vaporization Behaviors of Isooctane and an Optical, Non-fluorescing Multicomponent Fuel in a Spark Ignition Direct Injection Engine

2010-10-25
2010-01-2271
Investigations of the fuel injection processes in a spark ignition direct injection engine have been performed for two different fuels. The goal of this research was to determine the differences between isooctane, which is often used as an alternative to gasoline for optical engine investigations, and a special, non-fluorescing, full boiling range multicomponent fuel. The apparent vaporization characteristics of isooctane and the multicomponent fuel were examined in homogeneous operating mode with direct injection during the intake stroke. To this end, simultaneous Mie scattering and planar laser induced fluorescence imaging experiments were performed in a transparent research engine. Both fuels were mixed with 3-Pentanone as a fluorescence tracer. A frequency-quadrupled Nd:YAG laser was used as both the fluorescent excitation source and the light scattering source.
Technical Paper

Influence of Injection Nozzle Hole Diameter on Highly Premixed and Low Temperature Diesel Combustion and Full Load Behavior

2010-10-25
2010-01-2109
Diesel engines face difficult challenges with respect to engine-out emissions, efficiency and power density as the legal requirements concerning emissions and fuel consumption are constantly increasing. In general, for a diesel engine to achieve low raw emissions a well-mixed fuel-air mixture, burning at low combustion temperatures, is necessary. Highly premixed diesel combustion is a feasible way to reduce the smoke emissions to very low levels compared to conventional diesel combustion. In order to reach both, very low NOX and soot emissions, high rates of cooled EGR are necessary. With high rates of cooled EGR the NOX formation can be suppressed almost completely. This paper investigates to what extent the trade-off between emissions, fuel consumption and power of a diesel engine can be resolved by highly premixed and low temperature diesel combustion using injection nozzles with reduced injection hole diameters and high pressure fuel injection.
Technical Paper

Experimental Investigations of Two-Stroke SI Combustion with Simultaneous Cycle-Based Fuel Consumption Measurements

2010-09-28
2010-32-0061
Unstable combustion and high cyclic variations of the in-cylinder pressure associated with low engine running smoothness and high emissions are mainly caused by cyclic variations of the fresh charge composition, the variability of the ignition and the fuel mass. These parameters affect the inflammation, the burn rate and thus the whole combustion process. In this paper, the effects of fluctuating fuel mass on the combustion behavior are shown. Small two-stroke engines require special measuring and testing equipment, especially for measuring the fuel consumption at very low fuel flow rates as well as very low fuel supply pressures. To realize a cycle-resolved measurement of the injected fuel mass, fuel consumption measurement with high resolution and high dynamic response is not enough for this application.
Technical Paper

An Experimental Study of Homogeneous Charge Compression Ignition (HCCI) with Various Compression Ratios, Intake Air Temperatures and Fuels with Port and Direct Fuel Injection

2003-06-23
2003-01-2293
A promising approach for reducing both NOx- and particulate matter emissions with low fuel consumption is the so called homogeneous charge compression ignition (HCCI) combustion process. Single-cylinder engine tests were carried out to assess the influence of several parameters on the HCCI combustion. The experiments were performed both with port fuel injection (PFI) and with direct injection (DI) under various compression ratios, intake air temperatures and EGR-rates. Special emphasis was put on the fuel composition by using different gasoline and diesel fuels as well as n-heptane. Besides engine out emissions (CO2, CO, NO, O2, HC, soot) and in-cylinder pressure indication for burning process analysis, the combustion itself was visualised using an optical probe.
Technical Paper

The BPI Flame Jet Concept to Improve the Inflammation of Lean Burn Mixtures in Spark Ignited Engines

2004-03-08
2004-01-0035
Spark ignited engines with direct injection (DISI) in fuel stratified mode promise an increase in efficiency mainly due to reduced pumping losses at part load. However, the need for expensive lean NOx catalysts may reduce this advantage. Therefore, a Bowl-Prechamber-Ignition (BPI) concept with flame jet ignition was developed to ignite premixed lean mixtures in DISI engines. It is characterised by a combination of a prechamber spark plug and a piston bowl. An important feature of the concept is its dual injection strategy. A pre injection in the inlet stroke produces a homogeneous lean mixture with an air fuel ratio of λ = 1.5 to λ = 1.7. A second injection with a small quantity of fuel is directed towards the piston bowl during the compression stroke. The enriched air fuel mixture of the piston bowl is transported by the pressure difference between main combustion chamber and prechamber into the prechamber.
Technical Paper

Characterization of Mixture Formation in a Direct Injected Spark Ignition Engine

2001-05-07
2001-01-1909
We have performed simulations and experiments to characterize the mixture formation in spray-guided direct injected spark ignition (DISI) gasoline engines and to help to understand features of the combustion process, which are characteristic for this engine concept. The 3-D computations are based on the KIVA 3 code, in which basic submodels of spray processes have been systematically modified at ETH during the last years. In this study, the break-up model for the hollow-cone spray typical for DISI engines has been validated through an extended comparison with both shadowgraphs and Mie-scattering results in a high-pressure-high-temperature, constant volume combustion cell at ambient conditions relevant for DISI operation, with and without significant droplet evaporation. Computational results in a single-cylinder research engine have been then obtained at a given engine speed for varying load (fuel mass per stroke), swirl and fuel injection pressure.
Technical Paper

A Study of the Thermochemical Conditions in the Exhaust Manifold Using Secondary Air in a 2.0 L Engine

2002-05-06
2002-01-1676
The California LEV1 II program will be introduced in the year 2003 and requires a further reduction of the exhaust emissions of passenger cars. The cold start emissions represent the main part of the total emissions of the FTP2-Cycle. Cold start emissions can be efficiently reduced by injecting secondary air (SA) in the exhaust port making compliance with the most stringent standards possible. The thermochemical conditions (mixing rate and temperature of secondary air and exhaust gas, exhaust gas composition, etc) prevailing in the exhaust system are described in this paper. This provides knowledge of the conditions for auto ignition of the mixture within the exhaust manifold. The thus established exothermal reaction (exhaust gas post-combustion) results in a shorter time to light-off temperature of the catalyst. The mechanisms of this combustion are studied at different engine idle conditions.
Technical Paper

Investigations of Mixture Formation and Combustion in Gasoline Direct Injection Engines

2001-09-24
2001-01-3647
The spray propagation and disintegration is investigated in a pressure chamber. With Particle Image Velocimetry the direction and velocity of both, fuel droplets and induced gas flow are detected. By means of shadow photographs the spray cone geometry is visualized. To verify the predictions made of the measurements mentioned above and to rate the quality of the tuning of the parameters in-cylinder gas flow, injection pressure, position of Injector and position of spark plug under real engine conditions, a fast gas sampling valve is used in three different engines. The in-cylinder gas temperature and the soot concentration are measured crank angle resolved by means of the Two-Colour-Method in a 1-cylinder GDI-engine. The soot concentration and temperature show the influence of the injection pressure on emissions like soot and nitric oxide.
Technical Paper

Influence of Atomization Quality on Mixture Formation, Combustion and Emissions in a MPI-Engine Under Cold-Start Conditions, Part I

2002-10-21
2002-01-2807
The study presented in this two part paper was focused on the influence of primary mixture formation on engine running behavior covering the areas combustion and raw emissions. Two different concepts for primary fuel atomization were utilized and compared, the standard production injector and a flash boiling injector. The spray generated by the flash boiling injector was characterized by a significant reduction in droplet size and a partial direct vaporization during the injection process by preheating the fuel inside the injector. In this study special emphasis was put on the transient process of engine start between typical cooling water temperatures of -7°C and 85°C. Various measurements and visualization techniques were applied to investigate the mixture preparation, the deposition of liquid fuel on the walls, the start of combustion, and in-cylinder and engine-out UHC emissions.
Technical Paper

Influence of Atomization Quality on Mixture Formation, Combustion and Emissions in a MPI-Engine Under Cold-Start Conditions, Part II

2002-10-21
2002-01-2806
The intention of the study presented in this two part paper is to investigate the influence oalf primary mixture formation on engine running behavior, covering the areas of combustion and raw emissions. Two different concepts for primary fuel atomization were utilized and compared, the standard production injector and a flash boiling injector. The flash boiling injector is characterized by a significant reduction in droplet size and a partial direct vaporization during the injection process by preheating the fuel inside the injector. In this study special emphasis was laid on the transient process of engine start between typical cooling water temperatures of -7°C and 85°C. Various measurements and visualization techniques had been applied to investigate mixture preparation, deposition of liquid fuel on the walls, start of combustion, and in-cylinder as well as engine-out UHC emissions.
Technical Paper

Characterization of the Combustion in a Direct Injection Spark Ignition Engine

2002-03-04
2002-01-0834
The physical behavior of the combustion process in a jet-guided direct injection spark ignition engine has been investigated with three different measurement techniques. These are flame visualization by use of endoscopy, ion-current sensing at 16 different locations in the combustion chamber and the estimation of the flame temperature as well as soot concentration based on multi-wavelength-pyrometry. The results of all these measurement techniques are in good agreement between each other and give a coherent picture of the physical behavior of the combustion process and make it possible to characterize the main influence parameters on combustion. This serves as a basis for validation and improvement of simulation tools for the engine thermodynamics and combustion.
Technical Paper

Characterization and Phenomenological Modeling of Mixture Formation and Combustion in a Direct Injection Spark Ignition Engine

2002-03-04
2002-01-1138
A phenomenological model for heat release rate predictions taking into account the characteristic processes inside a direct injection gasoline engine is presented. Fuel evaporation and preparation as well as the specifics of premixed and mixing controlled combustion phase are regarded. Only a few model constants need to be set which have been fit empirically for the application in a one-cylinder research engine. This jet guided direct injection gasoline engine employs a modern common-rail injection system and runs predominantly in stratified mode. The model allows the prediction of the influence of numerous parameter variations, e.g. injection-ignition phasing, load, engine speed, swirl, etc. on the combustion process. Furthermore efficient simulations can be carried out without using expensive three-dimensional CFD (computational fluid dynamics) calculations.
Technical Paper

Experimental Investigations on CI and SI Combustion Mode with Naphtha Fuels for Stationary Engine Applications

2017-03-28
2017-01-0874
Throughout the world cost-efficient Naphtha streams are available in refineries. Owing to less processing, CO2 emissions emitted in the course of production of these fuels are significantly lower than with conventional fuels. In common CI/SI engines, however, the deployment of Naphtha is considerably restricted due to unfavourable fuel properties, e.g. low cetane/octane numbers. Former investigations illustrated high knocking tendency for SI applications and severe pressure rise for CI combustion. Moreover, the focus of past publications was on passenger vehicle applications. Hence, this paper centers on heavy-duty stationary engine applications. Consequently, measures to increase the technically feasible IMEP with regard to limitations in knocking behaviour and pressure rise were explored whilst maintaining efficient combustion and low emissions.
X